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Static Shape Control of Composite Plates Using
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An intuitive approach for the determination of voltage distribution in the application to shape control of smart
structures using piezoelectric actuators is presented. This novel approach introduces slope as the fine-tuning
criterion on top of the common displacement-based shape control. The algorithm, called the perturbation buildup
voltagedistribution is based on an iterative approachinspired by a previous algorithmon displacement control. This
method aims to provide a means of targeting the desired shape of a structure with a higher-order criterion such as
slope. A natural consequence of this method is the smoothing of the resultant structure. This effect will be illustrated
by numerical examples. Iterative parameters are varied to investigate favorable choices of the parameters. Results
show that the slopes of the structure can be improved, but at a tolerable expense of the displacement criteria.
Another result of practical interest is the reduction of internal stresses compared to cases using pure displacement

shape control.

Introduction

VER the past decade, significant interest has been raised in

the field of smart or intelligentstructures. Until recently, struc-
tural engineeringusually involved structuresthat are passive,but the
new technology of smart structures involves active structures, that
is, structures with the ability to change their overall properties or
configuration while in operation. The smartness or the intelligence
of the structure refers to the ability of the structure to actuate itself
based on some built-in control algorithm, to actuate the adaptive
materials incorporated in the structure depending on the response
obtained by a set of sensors also made of adaptive materials. Such a
self-contained system has the ability to perform various tasks such
as vibration control, shape control, health monitoring, and stability
control.

The field of shape control has been in existence since before that
of smart structures, in particularregarding the shape control of space
antenna, reflectors, etc.! Much of this work involving space truss
structures was based on controllingthe shape at discrete points using
conventional axial (point) actuators. The application considered in
this paperis thatof quasi-staticshape control. Shape controlinvolves
activating the structure to achieve a certain desired shape specified
by the user. Applications range from controlling the shape of aero-
dynamic surfaces, such as an airfoil, large flexible space structures
or space antenna reflectors.® It has been noted that smart actuators
integrated within the structure produce small in-plane deflections
that can, in turn, produce large out-of-plane deformations:* The ob-
jectives of shape controlinclude determining the magnitude of input
signal to apply to each actuator, or the optimal layout of actuators,as
well as determining any other variables that might affect the behav-
ior of the structure, to obtain a shape that is as close as possible to
the desired shape. Several works presentedresults of various shapes
obtained by changing input parameters such as actuator size, loca-
tion, and actuator voltages>% Although the viability of the shape
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control of structures was shown, the shape control problem was not
addressed directly.

The true shape control problem is a type of inverse problem with
no explicit solutions. The core of shape control is to minimize the
cost functional, usually defined as the squared difference of dis-
placements between the desired and the calculated/actual shape.”~®
Koconis et al.”® developed analytical methods for composite plates
and shells based on sandwich structures and finding solutions to
expressions corresponding to zero slope with respect to variables
to be optimized. Hsu et al.® adopted finite elements for composite
plates and used a gradientprojectionmethod to find the search direc-
tion. Until now, most plate models have been based on Kirchhoff’s
thin-plate theory or the first-order shear deformation theory; there
has been little work on shape control using high-orderdisplacement
theories for composite plates.

An iterative approach for shape control of composite beams
was formulated by Chandrashekhara and Varadarajan'® using
Reddy’s!! third-order displacement theory, whereas the composite
plate version'? used first-order shear deformation theory. In addition
to minimizing the error function, they also considered closed-loop
control where the displacements are fed back to determine the next
set of input voltages. Techniques of using optimal linear quadratic
Gaussian for shape control of smart structures were implemented
by Balakrishnan'® and Tan and Bainum.'*!> Alternatively, there
are simpler heuristic methods that have been developed for gen-
eral shape control of structures that are not necessarily smart struc-
tures. Some of these are the worst-in-best-out, the exhaustive single
point substitution,' and Skelton and DeLorenzo’s (SD) method (see
Ref. 1). The latter algorithm is based on choosing all actuators ini-
tially and then removing those that make the least contribution. An-
other method, called the successive peak error correction (SPEC)'®
was declared to be faster than the SD method but with comparable
precision.

The present work will considera composite laminate plate struc-
ture as the smart structure, using piezoelectricmaterials as the adap-
tive actuators. The mathematical model is a hybrid of a high- (third-)
order displacement theory and layerwise concept'’ that fully ac-
counts for the electromechanical coupling. This also allows both
thin and thick composite structures to be modeled, and the piezo-
electricactuatorscanbe placedin any of the layers, thatis, embedded
or surface bonded. The model is then incorporatedinto a finite ele-
ment (FE) formulation that, in general, also accommodates greater
freedom as to where the actuators may be placed. The use of finite
element analysis (FEA) means that the geometry is not restricted
to simple shapes, unlike that required by exact analytical solution
methodologies. The FEA calculationswill be done using anin-house
developed program based on the theoretical formulation.
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In Ref. 18, an intuitive/heuristic shape control algorithm was de-
veloped that has been inspired by elements of the SPEC method,
evolutionary strategies, and artificial neural networks. The algo-
rithm, called buildup voltage distribution (BVD), iteratively builds
up the voltage magnitudes of each potentially active patch, thus
resulting in a final voltage distribution.

Like many other shape control methods, BVD is solely displace-
mentbased. The new contributionof the present work is to introduce
slope as the next criterion for shape control. This algorithm, called
perturbation buildup voltage distribution (PBVD), is an iterative
algorithm with a concept similar to BVD. Initially, displacement
shape control based on a linear least-square (LLS) fit is performed
on the structure. The resultis a structure with some bumpiness, and
this is taken as the initial configuration for PBVD. In PBVD, slope
is regarded as the fine-tuning criterion used to smoothen the struc-
ture. In the iterative process, the voltages are perturbed and build up
based on a cost function determined by the slope.

Unlike the least-squaresmethod, PBVD makes no assumptionon
linearity and, hence, can be used for general nonlinear piezoelas-
tic systems. Initial investigationinclude dual criteria displacement-
slope shape control using LLS. It will be shown that these two
effects are competing, and that PBVD was developed to smoothen
the structure using slope criterion, but at a tolerable expense of the
displacementcriterion.

Mathematical Model

The theoretical formulation combines the high-order displace-
ment (HOD) field and a linear layerwise voltage field. They will be
incorporated into the FE formulation with displacements and volt-
ages as the nodal variables. A more detailed development of the
mathematical model can be found in Ref. 17.

Governing Equations

The mechanical behavior of the structureis modeled by the third-
order displacement field, used by Lo et al.,'” as shown in Eq. (1):

Ux,y,2) =ug(x,y) + 2 (x, y) + 270 (x, ) + Do (x, y)
V(x,y,2) = v(x, y) + 29, (x, y) + 224, (x, ) + 20, (x, y)

W(.X,y,Z)ZU)U(.X,y)+sz(.x,y)+22§z(x,y) (1)

The displacement functions U, V, and W in the x,y, and z
directions are composed of in-plane subfunctions such as
uo(x,y), vo(x,y), ¥e(x,y), etc., which are separated from the
thickness z dimension. The advantages of the cubic HOD are 1) that
it is suitable for both thick and thin composite structures, 2) that no
shear correction factor is required, 3) that it models the transverse
shear effects and captures a parabolic transverse shear strain across
the thickness of the structure,4) that transverse normal strain is also
accounted for, 5) that there is less restriction on the type of problem
because displacement field is independent of boundary conditions
and material properties, and 6) that the absence of derivativesin the
displacementfield means that C° shape functions can be used in the
FE formulation. This represents a total of 11 mechanical degrees of
freedom:

u=I[uy vo wo Y wy Y. & &y & o Qoy]T (2)

The strain vectors in Eq. (3) are defined in the usual manner and,
thus, will not be elaborated on further:

T
[er & e &l =&, = Dyu

[84 ES]T =& = Dsu (3)

The linear layerwise formulation has been used by Saravanos and
Heyliger®® and before them, Robbins and Reddy.?' This technique
will be applied to the electric potential and separates the field into
planarg; and transverselayerwise L ; functions. A generallayerwise
function may be written as in Eq. (4):

n layers + 1

O,y 2.0= Y. L@y @)

j=1

The structure or laminate is divided into several layers, and each
layer can be approximated by a linear electric potential field in
the z direction. Hence, if the overall electric potential across the
thickness is a polynomial function of n degrees, then there should
be at least n discrete layers for this layerwise approximation. Thus,
the electric potential within the kth layer is given in Eq. (5):

O(x,y, Dk = La(@@r(x, ¥) + Ly (D@r 41 (x,y)  (52)

where

Z— Zk+1 = i
Li(z) = ———, Ly (2) = ——

2k — Z+1 Zk+1 — Tk

(5b)

Note that ¢ (x,y) and ¢, (x,y), are functions at the kth and
(k + Dith interfaces, respectively.

From the definition of the electric field as the negative gradientof
the electric potential, the layerwise expression for the electric field
at the kth layer is

o (x, 0 X,
mm% + Ly, <z)*"“a‘—x(y)
E.(x,y,2)
0pr(x,y) 0 4+1(x,y)
Ey(x» ¥, 2) = Lkd(Z)—y +Lku(z)a—y
E.(x,y.2)], 1 1
— (X, y) + —¢k+1(x,y)J
Tk~ Z+1 Tk+1 — Lk

(6)

The FE formulation is based on the Hamilton’s variational prin-
ciple, which considers the strain potential energy and work for
the whole structure. Thus, the mechanical behavior modeled by
the HOD theory and the electrical behavior modeled by the
layerwise theory will be fully coupled. The natural boundary condi-
tions are also implicitly accounted for. The present work will neglect
the kinetic energy term.

The potential energy is the internal potential strain energy of the
system or structure. For piezoelectric systems (i.e., structures that
have parts that are piezoelectric materials), the potential energy®? is

dP = (0 de — DAE) x volume 7

The specific form of potential energy P of Eq. (7) is chosen be-
cause its natural variables are strain & and electric field E, both of
which can be expressed in terms of displacementand electric volt-
age, respectively, which are obvious choices as degrees of freedom
in FEA. This necessitates the use of the stress formulation of the
piezoelectric constitutive equation as shown in Eq. (8):

(o] Ci1 Ci2 (13 Cle—l &1 €3]

0> Clpa € €G3 (g & €3
03 LC'13 C3 (33 C36J €3 €33
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The substrate material is orthotropic at most, and the piezoelec-
tric material is orthorhombic, class mm?2 as indicated by Eq. (8).
Piezoelectric stress coefficients (e, and e,) are set to zero for non-
piezoelectricmaterials. The globalcoordinatesystem used in Eq. (8)
has taken into account the rotation of the material about the trans-
verse normal z axis. For a material with zero rotation, the following
material coefficients are zero: c¢;¢, C26, C36, Ca5, €14, €36, and x1,.

By the use of the constitutive Egs. (8), the potentialenergy integral
can be expressed in terms of virtual strains and electric fields as

n n
6/ Pdr = / / {SehT(cheh — €ZE0) + 683- (cjaY — eXTE[)
1 1 14

—8E] (e,e, + X E) — SE{ (ey8, + X0 Eo) } dV dr (9a)

The virtual work due to the externally applied load is the product
of the variational generalized coordinates and the virtual forces.
Thus, in general, the total virtual work §W of a structure is due to
the mechanical forces including volume forces F", surface forces
F5, and point forces F” acting on displacements Ur. They are also
due to electrical surface charges QS in the presence of an electric
potential difference ¢p. Thus, the integral of the variation of work is
given in Eq. (9b) in terms of force vectors, displacement vectors,
surface charge, and electric potential:

1 1
/ swm:/ (/SUTTFVdV
fo ) v

+ /aUTTFS dS + sULF” —/SgondS) dt (9b)
N N

To achieve practical solutions from the analytical formulationde-
scribed, an FE formulation with electric potential and mechanical
variables as the degrees of freedom is introduced. In the present
work, an eight-node HOD-layerwise rectangular plate element has
been developed. Although the FE implementation shown hereafter
appears standard, there is novelty in the specific form of the combi-
nation of the HOD-layerwise concept.

The real displacement functions [Eq. (1)] and strains [Eq. (3)] in
terms of the nodal variables [u,] are given in Egs. (10) and (11):

Ux,y,2)
Vx,y,2) | = [A@DIN.E, m]lu.] (10)
Wi(x,y,2)

[es(x, ¥, 2)] = [Dy(x, y, DN, (&, M][u.]

[es(x, y,2)] = [Ds(x, y, DN, m]u.] (11)

The shape function matrix N, (€, ) in Eq. (10)isan 11 x (11 x 8)
matrix that uses the standard eight node serendipitous shape func-
tions. The electric counterpart of the shape function matrix is
N, (&, 1, 2)x, with dimension 1 x 8(n + 1), and it incorporates the
layerwise and the eight-node shape functions. It relates the nodal
voltages to the voltage function [Eq. (12)] of the eth element at the
kth layer and the electric field:

O(x,y,2); = [Ny, n, Dillee] (12)
[E(x,y, D], = =V[N, (&, n, 2)i]lg.] (13)

Finally, by applicationof the variationalprincipleby includingthe
definitions of Egs. (10-13), the governing equation of the structure
in terms of the FE nodal variables is obtained in Eq. (14):

K, K, u F,
[K(pu] [Kwp] Qog _[Qg]
Equation (14) represents the summation of the equations of all
of the elements and, thus, is the global equation for the system,
hence the subscripts g. The mechanical, electrical, and electro-

mechanically coupled stiffness of the structure are represented on
the leftside of Eq. (14), whereas the externallyapplied forces F, and

externally applied charges Q, are representedon the right-handside
of Eq. (14). This formulationis general in the sense that it can model
laminated composite structures with arbitrary boundary conditions.
The robustnessof this formulationis thateach elementof each layer
can be made of any material, and if it is piezoelectric, then setting
the appropriate (electrical) boundary conditions will allow it to act
as an actuator or sensor.

PBVD Shape Control

Many existing shape control algorithms are formulated from
displacement-based cost functions. Chee et al.'® showed that sim-
ple desired shape and configuration can be obtain with relative ease,
whereas more complex desired shapes or structural configurations
are achievable globally, but introduce some uneveness locally. An
example of a structure obtained by simple LLS fit superimposed on
its desired shape is shown in Fig. 1 (details found in the “Numerical
Examples” section). Note the resultant bumpiness of the structure.
Preliminary investigations using dual criteria slope-displacement
LLS shape control resulted in Fig. 2. The middle part of the struc-
ture appeared to be have been smoothed, but tip displacements are
worse than in the pure displacement-shapecontrol case.

A possibleimprovement in dual criteria LLS is to assign weights
to the slope and displacements. However, the determination of
weights would not be a trivial task. Thus, an iterative perturba-
tion technique is introduced, and it implicitly targets regions that
need the most improvement. The PBVD concentrateson iteratively
correcting the slopes locally. A consequence of PBVD will be the
smoothing of the actual structure because the slope is being con-
trolled. This is achieved without significant sacrifice of the target
displacement. Although the name and concept of the algorithm is
motivated by BVD'® (a purely displacement-based shape control),
the PBVD algorithm is significantly different.

Defining the Problem

The structure whose shape is to be controlledis a laminated com-
posite plate in/on which piezoelectricactuators can be embedded or
surface attached. The electricfield is applied in the normal direction
of the composite plane. The actuators are discretized as patches to
distinguish them from the hypothetical, computational elements in

actual desired

Fig. 1 Midplane transverse displacement of cantilever plate with
a twisted desired shape; actual shape by displacement LLS is super-
imposed (oblique view).

i—17/ actual

Fig.2 Dual criteria slope and displacement shape control using LLS.
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FE analysis. Thus, for the FE analysis, a patch is constructed of
at least one element. The size of the patch is the real size of the
actuator, whereas the size of the element is determined by the user,
depending on the structural topology and desired accuracy of the
FE mesh.

Electrical voltages are imposed as boundary conditions such that
the top and bottom surfaces of each patch have constant voltages.
The implementation of this condition in the FEA is achieved by
assigning the same voltage values to all nodes of each actuator
patch surface at each interface. Thus, the nodal voltage vector ¢, of
Eq. (12) would be a constant vector, whereas in Eq. (5) each voltage
interface function would be a constant value.

The shape control problemanalyzedin this paperinvolvesfinding
the voltage distribution, that is, the magnitude of voltages to be
applied to each of the piezoelectric patches. The desired shape of
the structure is known, either as a mathematical function or as the
specification of the displacementsat the nodes. There exists a linear
relationship between the voltage and displacement'® and, hence,
also between the voltage and slope, due to the linear model of the
constitutivepropertiesand the governingequations. Thus, the slopes
(for the eth element) and transverse nodal displacements (for the
whole structure) can be directly related to the applied patch voltages
[Eq. (15-16)] by the influence coefficient matrices obtainedby FEA:

Np
(w) =[Cullg) = Y {Culwr = (Cuhren

k=1

+{Cw}2§02 + - +{Cw}Np§0Np (15)
Np
(5. = [Cullp} = D _{Cuhir (16)
k=1
where S, =dw/dx, C;, is the matrix of coefficient of S,, ¢, is the
voltage on patch k, and N, is the number of active patches.
When the voltage is perturbed by a small amount d¢, at patch
k only, from the base voltage configuration {¢°} then the slopes of
the perturbed structure are given by Eq. (17), where superscript 0
represents the quantities in base configuration:

{83 = {8°} +(Cohi don (17)

PBVD Algorithm

The PBVD method starts with the initial configuration, which is
the resultant of pure displacement shape control using LLS. The
strategy involves improving the slope of the structure on an ele-
mental basis, where the elements with larger slope discrepancies
(compared to the desired slope values) will be improved first. The
voltage required to improve the slope in an element will be calcu-
lated such that only small improvements are made at each iteration,
hence, requiring only small amounts of incremental voltage at a
time.

The measure of transversedisplacementsis the sum of the squared
difference w, betweenthe desired and the actualnodal values. How-
ever, the slopes are measured on an elemental basis. Hence, the area
integral of the squared difference S, , of the desired and actual slope
is used. This has the advantage of placing more importance on the
improvement of slopes of larger-sized elements.

To investigatethe voltage perturbationeffect on the slope, the new
slope is compared with the original slope with respect to the desired
slope. Because the displacement and slope are, in fact, competing
criteria, the improvement of the slope of the structure will be at the
expense of achieving the desired displacement. When a tolerance
factor p is incorporated, it is possible to aim for an improvementin
the slope, at the same time restricting the displacementcriteria from
deterioratingexcessively. This dual criteriais expressedin Eq. (18):

2 2
/ (s; - s;”) dA, < (1 - p) / (s;" - s;”) dA,
A A

nodes nodes
Z(w[ —wl‘.i)2 < (l+p)Z(w?—wf)2 (18)
1

i=1

where superscriptd representsdesiredquantities. Note that the equa-
tion involving S, would be similar to Eq. (18).

During each iteration, an incremental voltage will be added tem-
porarily, and the effects on the slope of the other elements as well as
displacementsare checked. If the side effects of adding d¢ are toler-
able, thenitis added permanently,and the new voltage configuration
will be used in the next iteration.

Perturbing the voltage at the kth patch only, the dual criteria are
reexpressedas in Eq. (19):

p/ (5¢) dA + 2d¢>/ (s)(ce,), da+ dg02/ (c:)ida <o

nodes nodes nodes
-p z:(wf)2 +2de Z w; (C;)ki + dg? Z (Ci)i <0
i=1 i=1 i=1

(19)

and enable the calculation of the optimum incremental voltage d¢,
where S¢ = §¢ + 8¢ and w' =w® + w? .

Another quantity that is used later is the patch sensitivity index
(PI), which is defined in Eq. (20):

O — ¢}

P’ (k, e) = s
( ) Sea — S,?A

=g +1

1
[Ce (@ +1)[Ce (90 +1) +25¢]da,

SXk SX)

PI™ (k, ¢) =

(20)

Large PI(k, ) values imply that element e is insensitive to the volt-
age applied to patch k.

The PBVD algorithm is summarized as follows:

1) Perform displacement shape control using LLS, and use the
resultantvoltage configurationas the initial configurationfor PBVD.

2) Calculate w, and (5¢,), (5¢,) for all elements e.

3) Sortthe (5¢,), (5¢,) from the highest magnitude to the lowest.

4) Select an element with high (5%) to be improved on. A normal
probabilitydistributionselectionmechanismis used so thatelements
with higher (but not necessarily the highest) (S%) magnitude are
more likely to be selected.

5) Calculate PI** (k, ) and PI*¥ (k, e) for the kth patch and the eth
element for all patches and all elements.

6) Sort the slope sensitivities among all patches, for the selected
element.

7) Begin iteration of voltage perturbation starting from the most
sensitive patch.

8) Calculate incremental voltage d¢ necessary to improve slope
for this element, but with a tolerable worsening in displacement.
This is done by finding the optimum d¢ of Eq. (19).

9) Apply d¢ and recalculatew, and (S¢,), (S¢, ) forall elements.

10) Check for adverse effectsin the slopes of otherelements when
d¢ was applied to patch k. If the slope of the other elements are
within a tolerable limit, then accept the new voltage configuration
and begin the next iteration in step 2. Otherwise, go to step 7 to
perturb the next patch.

11) Continue iteration until the maximum number of iterations is
reached or the tolerance on the original w, is exceeded.

Numerical Examples

Test Model Description

The structural model for the following set of tests is depicted in
Fig. 3. The 20 shaded regions represent areas designated as active
patches. For the FEA, the structure is divided into 99 elements.
In the present case, each patch is modeled by one FE. The di-
mensions of the cantilever plate are length L =0.150 m and width
C =0.120m. The thicknessof the single-layeredsubstrateis 2.0e —3
m. The gap between the patches and the edge is 0.005 m, and the
gap between the patches themselves is 0.010 m. The aluminum
substrate has the following stiffnesses: ¢1; = ¢ = ¢33 = 105.896,
Clp=Cp=ci3=54.552, and c4y =cCs55 =c¢s =25.67 GPa. The
piezoelectric actuators (PIC151), with thickness of 5.0e—4 m,
are located at the regions corresponding to the patches and are
attached to the top and bottom layer of the substrate. Their
properties are stiffness ¢;; = ¢y = 107.6, ¢33 =100.4, ¢, =63.12,
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Table1 Percentage improvement of slope and displacement
measure after applying PBVD

Parameter® Case 1 Case 2 Case 3 Case 4
LSd.tol 0.05 0.5 5.5 5.5
Mult. Iter 1.9 1.9 100.9 100.9

p-tol 0.001 0.01 0.01 0.1

s.tol 0.3 0.3 2.3 30.03
w-disp 5.0267% 50.2868% 88.0973% 176.8081%
slope_x —3.8311% —1.7371% 3.4044% 14.9528%
slope_y —7.1609%  —22.2148% —29.2904%  —49.1477%

2Explained in text.

<

LN NG
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Fig.3 Cantilever plate with 99 elements and 20 active patches (not to
scale).

AN

/1111111 ////// 14 g

Cy3 =13 =63.85, cya = 55 = 19.62, and cgq = 22.24 GPa; electric
permittivity x;; = x22 =9.818 and 33 =7.536 nF/m; and piezo-
electric strain constants d3; = dz, = —214.0, d33 =423.0, and d,5 =
d»y =610.0 pm/V. No external mechanical forces (F, =0) and no
external electric charges (Q, = 0) will be applied to this structure.

The presentstudy focusesin obtaining a twisted desired shape be-
cause this is the interesting case where PBVD is needed to improve
the structure after the initial displacement shape control stage. The
desired shape is specified by Eq. (21), where G is the scaling factor,
in this case G = 1. The twisted, wide cantileverexample may repre-
sent a wing structure that is required to be twisted for aerodynamic
purposes:

w(x,y) = [cosh(x) — 1]sin(y)/G 21

Performance of Slope-Based Shape Control

Preliminary investigationof this structureusing a purely displace-
ment LLS method for shape control resulted in the structure in
Fig. 1. This suggests that although the nodal displacements may
have matched well, the LLS method contains no mechanism that
monitors the slope of the structure. Hence, the overall twisting effect
was achieved, but there are regions of bumpiness. In the next stage,
the slopes were incorporated into the LLS, and this simultaneous
dual criteria (slope-displacement) shape control resulted in Fig. 2.
Significant improvement is evident as the center of the structure is
smoothed, but the tip displacementsworsened. Improvements could
be made by making use of weights, but therein lies the disadvantage
of having to choose the weights arbitrarily. Although the results are
not shown here, note that different weights on displacement and
slope have little effect on the results using LLS.

PBVD is a less rigid alternative to LLS that incorporates an el-
ement of randomness in the iterative process and does not require
weights. Instead, it allows the user more direct control by specify-
ing various tolerances in the iterative algorithm. Table 1 presents
the results of PBVD for four cases with different parameters. The
percentage values for w displacement and both slopes in Table 1
representthe percentage differencesbetween the squared difference
measure (W, Sca, Sya) of the PBVD optimized configuration and
their initial purely displacementshape controlled configuration. For
this particular case study, it was the slope in the y direction that
required more improvement, that is, Sy o < Sya. This was automat-
ically determined by the algorithm, and the results from Table 1
show the reduction in S,,; hence, improvement on the slope in
the y direction was achieved. From other data, not published here,
the slope in the x direction, in general, was an order of magnitude
better than its counterpart and, thus, does not have a high priority

for improvement. Table 1 shows that as slope y improves, slope x
slightly worsens, but in absolute terms, the slope in the x direction
is still better (values not shown here).

Because of the conflicting nature of displacementand slope, when
the slope in the y direction improves, the displacementdeteriorates,
as shown in Table 1. In the first case, when the slope was improved
by 7.16%, the displacement worsened by 5.03%. In the last case,
when the slope was almost improved by 50%, the displacement
deteriorated by 178%. Note that these values are cumulative over
the 339 nodal points; hence, the value for each point is, in fact,
much lower. Thus, how much improvementin the slope is required
and how much deteriorationin the displacementcriteria is tolerable
depend on the specific application. The accuracy of these results
depends on the FE software that was integrated with the PBVD,
which, in turn, had been validated by Chee et al.'”

The algorithm has incorporated such tolerance mechanisms as
LSdTol, the displacementtolerance above which the PBVD iteration
will discontinue; Mult.Iter, a multiplication factor that determines
the maximum number of iterations; p.tol, the p factorof Eq. (18) that
determines the incremental improvement in slope and the tolerance
in displacement for each iteration; and s.tol, the tolerance allowed
of the slopes of other elements when the slope of a specific element
is improved at each iteration. From Table 1, the iterations of the
first two cases were automatically stopped as they exceeded the
LsdTol. The s.tol and p.tol influence the speed and the amount of
improvement made; a large value would signify a coarse iterative
approach that may not yield good solutions. From numerous other
tests, favorable results seemed to be obtained when p.tol and s.tol
are of the order of magnitude of 0.01 and 1, respectively.

The slope measure S¢,, for each element for the four cases of
Table 1, is depicted in Fig. 4 along with the control case (pure
displacement control). Clearly, case 4 shows the greatest improve-
ment in slope in the y direction. The three-dimensional view of the
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Fig.4 Normalized slope measure for each element for four PBVD cases
and a control case: A, 1;V,2; O, 3; B, 4; and X, ctrl.
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Fig.5 Cantilever plate after PBVD procedure; oblique full field view
of the transverse displacement.
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Table2 Applied voltages of piezoelectric patches predicted
by PBVD for slope-displacement shape control vs pure
displacement shape control case

Patch Pure

number  displacement Case 1 Case 2 Case 3 Case 4
1 6,023.5 5,997.2  6,023.5 6,023.5 5,437.7
2 12,126.2 11,047.2 8,226.4 7,081.5 4,043.4
3 8,300.9 8,300.9 8,060.7 7,599 6,784.7
4 7,725.5 7,725.5 7,725.5 7,725.5 5,314.1
5 —3,252 —3,252.0 -3,252.0 —3,252.0 —4,590.7
6 8,596 8,512.9 8,596 8,581.9 6,323.7
7 —7,025.2 —7,025.2 -7,0252 —7,0252 —3,264.6
8 —3,957.5 —3,957.5 -3,9575 —39575 -3,9575
9 —2,832.5 -2,8325 -2,8325 -—2,8325 -—2,8325
10 —807.6 —807.6 —807.6 —807.6 —807.6
11 —8,596.0 —8,596.0 —8,596.0 —8,596.0 —7,217.8
12 7,025.2 7,025.2  7,025.2 7,025.2 7,025.2
13 3,957.5 3,957.5 3,957.5 3,957.5 3,957.5
14 2,832.5 2,832.5 2,832.5 2,832.5 1,109.1
15 807.6 807.6 807.6 807.6 807.6
16 —6,023.5 —-5,973.5 —6,023.5 —6,023.5 —5,755.5
17 —12,126.2 —10,963.9 —-82584 —7,0585 —-5,961.4
18 —8,300.9 —8,300.9 -8,140.3 —-7,572.1 -5974.1
19 —7,7125.5 —7,725.5 —=7,7725.5 —7,7255 —6,229.2
20 3,252 3,252 3,252 3,252 5,372.5
Total [V| 121,294 118,893 113,126 109,737 92,767

transverse displacement w at the midplane for case 4 is shown in
Fig. 5. Compared with Fig. 1, the regionsat the edge of the cantilever
plate where the most bumpiness existed have been smoothed. This
improvement comes at the expense of the displacement criterion
where the tip displacementis noticeably increased.

The voltage configuration predicted by PBVD for the four cases
listed in Table 1 are presentedin Table 2, along with the voltages for
the pure displacement shape control case. The voltages for all cases
in Table 2 do seem to be higher than what is currently practical.
However, these voltage magnitudes are also an indication of the
difficulty of forcingthe structureto conformto this particulardesired
shape [Eq. (21)], given the structural configuration and given the
particular choice of materials. For instance, a choice of different
materials may ease the voltage requirements to achieve this desired
shape. Also, note that the five sets of voltagesare differentfromeach
other, but some patches have very similar voltages. Looking at the
voltage values for case 4, where there is the greatestimprovementin
the slope in the y direction, the voltage for several patches are lower
than the others. In addition, the total magnitude of voltages is the
lowestforcase 4, implyingthelowestelectricalenergyrequirements
for this voltage configuration.

Stress Reduction Effect

The existence of complex stress fields within a smart structure
should be expected because of the independentlocalized actuators
distributed throughout the structure. In shape control, for the same
amount of piezoelectric material incorporated into the structure,
better shape controllability is attained by having the piezoelectric
material existing as separate patches rather than to have one con-
tinuous layer of piezoelectric material across the structure. This is
analogous to providing the structure with enough actuation degrees
of freedom to achieve a complex shape that can be thought of as
a combination of basic shapes. By the imposition of voltages on
the actuators, the structure is being coerced into the desired shape.
This effectis more forceful in the LLS method because it is a direct
approach, whereas the iterative approach of PBVD is more relaxed
in its process of calculating the voltage distribution. In either case,
when significantly different voltages are applied to various patches,
asdirected by the shape controlalgorithm, localizedinternal stresses
are set up. This issue is particularly significant to smart structures,
where the actuators are not external, but are regarded as an integral
part of the structure.

The bumpiness of the shape of the structure represents, in fact,
changes in slope in localized regions. This means that the local
curvature has a higher than usual magnitude. In practical terms,
this translates to high stresses in certain regions, as well as large

variation in stresses between other regions. Because the PBVD al-
gorithm has the ability to smoothen the structure, it can be regarded
as a secondary procedure in shape control, used to reduce inter-
nal structural stress caused by the primary stage, which is pure
displacement-shape control. This conjecture will be validated by
the results obtained using the PBVD algorithm.

The following testcomparesthe internal stresses generated within
the structureas a resultof the pure displacement-shapecontrolusing
LLS and the stresses obtained after the PBVD procedureis applied.
The testmodelis the same as that describedearlier, and for the PBVD
case, the set of parameters correspondingto case 4 from Table 1 is
used. The voltages of case 4 are also shown in Table 2. The stresses
for each element are calculated at their 2 x 2 Gauss points at a
height of z=9.0e—4 m, which is within the aluminum substrate.
Although all six stresses were calculated, only a selection of the
results are presented here due to space limitations. The normal in-
planestressesat y = —3.923e—2 m along the length of the structure
is shown in Fig. 6, with dashed lines for stresses without PBVD and
solid lines for stresses with PBVD. There is a clear reductionin the
o, along the entire length of the structure, and it is mainly tensile
stresses. Several points with high o, magnitudes were also reduced
significantly. Note that this stress is compressive in some regions
and tensile in others.
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Fig. 6 Reduction of the normal in-plane stresses by the PBVD proce-
dure (y section): W, str xx; V, str yy; 0, ostr xx; and V, ostr yy.
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Fig.8 Reduction of the normal in-plane stresses by the PBVD proce-
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Fig.9 Reduction of a transverse and in-planeshear stress by the PBVD
procedure (x section): W, str xy; V, str yz; O, ostr xy; and V, ostr yz.

The in-plane shear stress 7,, and one of the transverse shear
stresses 7, are plotted in Fig. 7 at y = —3.923¢—2 m. Although
the transverse shear stress may be smaller in magnitude compared
to the other stresses, it is clearly not negligible. This justifies the
need to use a displacementfield, such as the present one, that is able
to capture the transverse shear effects. From Fig. 7, it can be seen
that at points with high-stress magnitudes, applying PBVD would
reduce their magnitudes significantly. This effect is consistent with
the PBVD algorithm, which was founded on the premise of reducing
the worst local effects.

The normal in-plane stresses at the perpendicular cross section,
x =8.077e—2 m is plotted in Fig. 8, whereas the transverse and
in-plane shear stresses are found in Fig. 9. This cross section is
almost at the center of the cantilever plate running across its width.
Regions of high stressesin both Figs. 8 and 9 have been significantly
reduced. For example in Fig. 8, the maximum reduction of o, of
approximately 60-45 MPa (25%) was achieved, whereas in Fig. 9,
the in-plane shear (twist) stress 7., was reduced from 18 to 11 MPa
(38%) at one region. Note that in all graphs the discrete nature of the
stress distribution is quite evident and that this is a mere reflection
of the discrete actuator patch layout of the physical structure.

Conclusions
A novel shape control algorithm that uses both displacement and
slope criteriais presented. The FE formulation was based on a com-
bination of third-order displacement field and layerwise concepts

developedby the authors for laminated smart composite plate struc-
tures. Many existing shape control algorithms that are displacement
based yield reasonableresults. However, this paper has shown that,
for an extended structure, with many independent actuators dis-
tributed across the structure, it was found that pure displacement-
based shape control predicts a voltage configuration that, when ap-
plied, produces regions of bumpiness in the shape due to localized
effects.

The PBVD is an iterative algorithm designed to reduce this ef-
fect by targeting some of the worst affected regions by using slope
values. Regions where the desired slope differs most from the ac-
tual slope are improved first. Because the displacement and slope
are conflicting criteria, the slopes would have to be improved at the
expense of the displacement. This has been designed into the algo-
rithm to enable the user to decide the extent of the worsening of
the displacement criteria that is tolerable. The results have shown
that the algorithm is successfulin achievingits goal of determining
the voltage configuration to actuate the structure to conform to the
desired shape, as well as smoothing the structure to a certain extent.

In practical, real-sized structures where discrete actuators are in
operation, although the bumpiness may not always be obvious, the
large gradients imply large internal strains and, thus, large internal
stresses. This paper has shown that the so-called smoothing that
is achieved via the algorithm is not merely an aesthetic improve-
ment. In fact, the significance of smoothing extends to alleviating
unnecessary internal stresses that could be generated if a purely
displacement-shapecontrol is used.
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